Package: easyalluvial 0.3.2

Bjoern Koneswarakantha

easyalluvial: Generate Alluvial Plots with a Single Line of Code

Alluvial plots are similar to sankey diagrams and visualise categorical data over multiple dimensions as flows. (Rosvall M, Bergstrom CT (2010) Mapping Change in Large Networks. PLoS ONE 5(1): e8694. <doi:10.1371/journal.pone.0008694> Their graphical grammar however is a bit more complex then that of a regular x/y plots. The 'ggalluvial' package made a great job of translating that grammar into 'ggplot2' syntax and gives you many options to tweak the appearance of an alluvial plot, however there still remains a multi-layered complexity that makes it difficult to use 'ggalluvial' for explorative data analysis. 'easyalluvial' provides a simple interface to this package that allows you to produce a decent alluvial plot from any dataframe in either long or wide format from a single line of code while also handling continuous data. It is meant to allow a quick visualisation of entire dataframes with a focus on different colouring options that can make alluvial plots a great tool for data exploration.

Authors:Bjoern Koneswarakantha [aut, cre]

easyalluvial_0.3.2.tar.gz
easyalluvial_0.3.2.zip(r-4.5)easyalluvial_0.3.2.zip(r-4.4)easyalluvial_0.3.2.zip(r-4.3)
easyalluvial_0.3.2.tgz(r-4.4-any)easyalluvial_0.3.2.tgz(r-4.3-any)
easyalluvial_0.3.2.tar.gz(r-4.5-noble)easyalluvial_0.3.2.tar.gz(r-4.4-noble)
easyalluvial_0.3.2.tgz(r-4.4-emscripten)easyalluvial_0.3.2.tgz(r-4.3-emscripten)
easyalluvial.pdf |easyalluvial.html
easyalluvial/json (API)
NEWS

# Install 'easyalluvial' in R:
install.packages('easyalluvial', repos = c('https://erblast.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/erblast/easyalluvial/issues

Datasets:
  • mtcars2 - Mtcars dataset with cyl, vs, am ,gear, carb as factor variables and car model names as id
  • quarterly_flights - Quarterly mean arrival delay times for a set of 402 flights
  • quarterly_sunspots - Quarterly mean relative sunspots number from 1749-1983
  • titanic - Titanic data set'

On CRAN:

6.08 score 108 stars 1 packages 75 scripts 432 downloads 1 mentions 23 exports 76 dependencies

Last updated 12 months agofrom:c327f1c7e1. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 02 2024
R-4.5-winOKNov 02 2024
R-4.5-linuxOKNov 02 2024
R-4.4-winOKNov 02 2024
R-4.4-macOKNov 02 2024
R-4.3-winOKNov 02 2024
R-4.3-macOKNov 02 2024

Exports:%>%add_imp_plotadd_marginal_histogramsalluvial_longalluvial_model_responsealluvial_model_response_caretalluvial_model_response_parsnipalluvial_widecheck_pkg_installedget_data_spaceget_pdp_predictionsmanip_bin_numericsmanip_factor_2_numericpalette_filterpalette_increase_lengthpalette_plot_intensitypalette_plot_rgppalette_qualitativeplot_all_histsplot_condensationplot_histplot_imptidy_imp

Dependencies:classcliclockcodetoolscolorspacecpp11crayondata.tablediagramdigestdplyrfansifarverforcatsfuturefuture.applygenericsggalluvialggplot2ggridgesglobalsgluegowergridExtragtablehardhathmsipredisobandKernSmoothlabelinglatticelavalazyevallifecyclelistenvlubridatemagrittrMASSMatrixmgcvmunsellnlmennetnumDerivparallellypillarpkgconfigprettyunitsprodlimprogressprogressrpurrrR6randomForestRColorBrewerRcpprecipesrlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
add bar plot of important features to model response alluvial plotadd_imp_plot
add marginal histograms to alluvial plotadd_marginal_histograms
alluvial plot of data in long formatalluvial_long
create model response plotalluvial_model_response
create model response plot for caret modelsalluvial_model_response_caret
create model response plot for parsnip modelsalluvial_model_response_parsnip
alluvial plot of data in wide formatalluvial_wide
check if package is installedcheck_pkg_installed
calculate data spaceget_data_space
get predictions compatible with the partial dependence plotting methodget_pdp_predictions
get predictions compatible with the partial dependence plotting method, sequential variant that only works for numeric predictions.get_pdp_predictions_seq
bin numerical columnsmanip_bin_numerics
converts factor to numeric preserving numeric levels and order in character levels.manip_factor_2_numeric
mtcars dataset with cyl, vs, am ,gear, carb as factor variables and car model names as idmtcars2
color filters for any vector of hex color valuespalette_filter
increases length of palette by repeating colourspalette_increase_length
plot colour intensity of palettepalette_plot_intensity
plot rgb values of palettepalette_plot_rgp
compose palette from qualitative RColorBrewer palettespalette_qualitative
plot marginal histograms of alluvial plotplot_all_hists
Plot dataframe condensation potentialplot_condensation
plot histogram of alluvial plot variableplot_hist
plot feature importanceplot_imp
Quarterly mean arrival delay times for a set of 402 flightsquarterly_flights
Quarterly mean relative sunspots number from 1749-1983quarterly_sunspots
tidy up dataframe containing model feature importancetidy_imp
titanic data set'titanic