Package 'parcats'

Title: Interactive Parallel Categories Diagrams for 'easyalluvial'
Description: Complex graphical representations of data are best explored using interactive elements. 'parcats' adds interactive graphing capabilities to the 'easyalluvial' package. The 'plotly.js' parallel categories diagrams offer a good framework for creating interactive flow graphs that allow manual drag and drop sorting of dimensions and categories, highlighting single flows and displaying mouse over information. The 'plotly.js' dependency is quite heavy and therefore is outsourced into a separate package.
Authors: Bjoern Koneswarakantha [aut, cre]
Maintainer: Bjoern Koneswarakantha <[email protected]>
License: MIT + file LICENSE
Version: 0.0.5
Built: 2025-01-04 03:56:01 UTC
Source: https://github.com/erblast/parcats

Help Index


create plotly parallel categories diagram from alluvial plot

Description

creates an interactive parallel categories diagram from an 'easyalluvial' plot using the 'plotly.js' library

Usage

parcats(
  p,
  marginal_histograms = TRUE,
  data_input = NULL,
  imp = TRUE,
  width = NULL,
  height = NULL,
  elementId = NULL,
  hoveron = "color",
  hoverinfo = "count+probability",
  arrangement = "perpendicular",
  bundlecolors = TRUE,
  sortpaths = "forward",
  labelfont = list(size = 24, color = "black"),
  tickfont = NULL,
  offset_marginal_histograms = 0.7,
  offset_imp = 0.9
)

Arguments

p

alluvial plot

marginal_histograms

logical, add marginal histograms, Default: TRUE

data_input

dataframe, data used to create alluvial plot, Default: NULL

imp

dataframe, with not more then two columns one of them numeric containing importance measures and one character or factor column containing corresponding variable names as found in training data.

width

integer, htmlwidget width in pixels, Default: NULL

height

integer, htmlwidget height in pixels, Default: NULL

elementId

, htmlwidget elementid, Default: NULL

hoveron

character, one of c('category', 'color', 'dimension'), Sets the hover interaction mode for the parcats diagram.', 'If 'category', hover interaction take place per category.', 'If 'color', hover interactions take place per color per category.', 'If 'dimension', hover interactions take place across all categories per dimension., Default: 'color'

hoverinfo

character, one of c('count', 'probability', 'count+probability') set info displayed on mouse hover Default: 'count+probability'

arrangement

character, one of c('perpendicular', 'freeform', 'fixed') 'Sets the drag interaction mode for categories and dimensions.', 'If 'perpendicular', the categories can only move along a line perpendicular to the paths.', 'If ‘freeform', the categories can freely move on the plane.’, 'If ‘fixed', the categories and dimensions are stationary.’, Default: 'perpendicular'

bundlecolors

logical, 'Sort paths so that like colors are bundled together within each category.', Default: TRUE

sortpaths

character, one of c('forward', 'backward'), 'Sets the path sorting algorithm.', 'If 'forward', sort paths based on dimension categories from left to right.', Default: 'forward' 'If 'backward', sort paths based on dimensions categories from right to left.'

labelfont

list, 'Sets the font for the ‘dimension' labels.’, Default: list(size = 24, color = 'black')

tickfont

list, Sets the font for the ‘category' labels.’, Default: NULL

offset_marginal_histograms

double, height ratio reserved for parcats diagram, Default: 0.8

offset_imp

double, width ratio reserved for parcats diagram, Default: 0.9

Details

most parameters are best left at default values

Value

htmlwidget

See Also

alluvial_wide , alluvial_long , alluvial_model_response , alluvial_model_response_caret

Examples

library(easyalluvial)

# alluvial wide ---------------------------------
p = alluvial_wide(mtcars2, max_variables = 5)

parcats(p, marginal_histograms = FALSE)

parcats(p, marginal_histograms = TRUE, data_input = mtcars2)

if(check_pkg_installed("randomForest", raise_error = FALSE)) {
  # alluvial for model response --------------------
  df = mtcars2[, ! names(mtcars2) %in% 'ids' ]
  m = randomForest::randomForest( disp ~ ., df)
  imp = m$importance
  dspace = get_data_space(df, imp, degree = 3)
  pred = predict(m, newdata = dspace)
  p = alluvial_model_response(pred, dspace, imp, degree = 3)

  parcats(p, marginal_histograms = TRUE, imp = TRUE, data_input = df)
}

run parcats shiny demo

Description

run parcats shiny demo

Usage

parcats_demo()

Value

No return value, called for side effects

Examples

if (interactive()) {
  parcats_demo()
}

Shiny bindings for parcats

Description

Output and render functions for using parcats within Shiny applications and interactive Rmd documents.

Usage

parcatsOutput(outputId, width = "100%", height = "100%", inline = FALSE)

render_parcats(expr, env = parent.frame(), quoted = FALSE)

Arguments

outputId

output variable to read from

width, height

Must be a valid CSS unit (like '100%', '400px', 'auto') or a number, which will be coerced to a string and have 'px' appended.

inline

logical, Default: FALSE

expr

An expression that generates a parcats

env

The environment in which to evaluate expr.

quoted

Is expr a quoted expression (with quote())? This is useful if you want to save an expression in a variable.

Value

No return value, called for side effects